
Central Processing

Central Processing, or perhaps Central for short, is a collaborative game made to

teach some fundamentals of binary logic and computer operations, intended to

be fun even when the concepts are understood.

players: 2

duration: about 10 to 15 min per round

audience: general, 10+ years of age suggested

Minimal materials needed: a standard deck of 52 playing cards and 4 jokers*, a

coin to flip, paper and a writing implement for short notes, the printed reference

sheet.

Optional materials: access to this website to randomly generate 8-bit strings, a

custom deck of cards.

*Note that many standard 54 card decks that contain only 2 jokers will actually

have 56 cards, with two of them being decorative start and end cards. This deck

will also work, once players decide which side of the decorative cards is the “1”

and the “0” side.

About binary

Binary is a system of writing numbers in which each binary digit, or "bit," is

either 0 or 1. So, for example, the number one is just written as 1, but the

number two is written as 10, because you can’t increment the ones place any

more.

https://imyxh.net/central_processing


In this game, we call a string of bits a register, which you'll represent as a row of

eight cards, with 0 on one side and 1 on the other.

Computers work by doing various different operations on various different

operands. Operands are what we call the input or output of an operation. For

example, in the operation “add x to y,” the operator is “add”, and the operands

are “x” and “y”. In Central Processing, we'll focus on some of the most common

binary operators, specifically, the ones named NOT, AND, OR, and XOR. It's

easiest to understand them with the truth tables at the bottom of these rules,

but here's a verbal explanation:

● NOT is the simplest operator. it has one operand, which is both an input

and an output. it simply flips all the bits in this operand. In central

processing, you apply the NOT operand on a register, and when doing so

you flip all the cards in the register.

● AND is another operator, but it takes both input and output operands. .

When you apply AND to an input operand and an output operand, every

bit in the output operand will be 1 only if both corresponding input bits

are 1. otherwise, it's 0.

● OR sets each output bit to 1 if, inclusively, the bit of the first or second

operand is 1, i.e. if at least one of the input bits is 1.

● XOR sets each output bit to 1 if, exclusively, the bit in either the first or

the second operand is 1, i.e. if the input bits differ.

Minimal setup (with regular playing cards and no internet):



1. Remove cards with values 1 (A) through 8. Separate out the hearts and

spades and put them aside in a pile. These are called immediate operands,

or immediates for short.

2. With the remaining diamonds and clubs of values 1 through 8, distribute

one suit to either player, forming the player registers. Order them from 1

to 8 from right to left from the perspective of the respective player.

3. From the rest of the cards, remove the 4 jokers and 4 kings, and place

them in the center, forming the central register.

4. Remaining should be all the cards of values 9 through Q. These are

operators. Shuffle these with the immediates (hearts and spades with

values 1-8), forming the draw pile.

5. Now we will generate and record our “goal state.”

○ If you have an internet connection, you may follow step 4 in the

custom setup.

○ Otherwise, pick up the 4 jokers and 4 kings that form the central

register.

■ For an easier game, flip two of them face down.

■ For a harder game, flip four of them face down.

○ Then shuffle the cards without looking and place them in order on

the table. Record this goal state as a string of 1s and 0s on your

piece of paper and place it near the central register.

○ Note that the goal state will look different to each player

depending on their orientation. If it reads 00000001 for one player,

it will read 10000000 for the other.

6. Now, we will randomize the registers.

○ If you have an internet connection, you may use the results from

step 5 in the custom setup.



○ Otherwise, for each card in the central register, flip a coin; if heads,

place the card face up, and if tails, place it face down. Then do the

same for both of the player registers.

7. Deal six cards to each player from the draw pile. Decide who goes first.

Custom setup (requires custom-printed cards, and internet access):

1. Some cards will have a 1 on one side, and a 0 on the other. These are bits.

Distribute eight bits in a line in front of each player. Each line of bits is a

player register.

2. Distribute the last eight bits in the center in a line. This is the central

register.

3. Shuffle all remaining cards together, forming the draw pile.

4. Now we will find and record our “goal state.” Navigate to

https://imyxh.net/central_processing and use the randomizer tool.

○ If you wish to control your difficulty, select it from the dropdown

menu and click "generate custom goal."

○ For a random difficulty, simply click the "randomize!" button.

○ Either way, read the string of eight bits to the right of "goal state"

and write them down on a piece of paper near the central register.

○ Note that the goal state will look different to each player

depending on their orientation. If it reads 00000001 for one player,

it will read 10000000 for the other.

5. Now, we will randomize the registers.

○ Hit "randomize!" if you haven't already, and flip over cards in each

of the three registers until they match what is shown on the

randomizer.

https://imyxh.net/central_processing


8. Deal six cards to each player from the draw pile. Decide who goes first.

Mechanics

1. A register is a row of 8 bits (cards) ordered in a line, with each card

having the value of one (face-up) or zero (face-down).

2. Each player has a register, and there is one register in the center. All the

registers are randomized at the start of the game.

3. There is a draw pile for the player to draw from which contains operators

(cards from 9-Q) and immediate operands or immediates (red cards from

1-8).

4. The operators are AND (9), OR (10), XOR (J), and NOT (Q), and their

functions are explained in the operator table below. They are played on

two registers, from one to another, to modify the latter register’s bit

values. They can also be played directly onto a register using an

immediate card as an argument. (Note that NOT is an exception to these,

and is only played on one register with no immediates.)

5. Immediates are used as operands; for example, a red 4 represents the

string 11110111 (i.e. the only zero is the fourth one from the right). This

replaces the “first register” for the operator, and so can be played directly

onto a player register or the central register. See the chart listed below

for the binary strings for each immediate.

6. On a player's turn, they may play as many cards from their hand as they

would like. Playing cards consists of playing an operator and optionally an

immediate at a time, following the operator table below. Players end their

turn by drawing until they have six cards.

7. One of the two mechanics will be selected:



a. For beginner players: players may, on their turn, also discard cards

freely as they wish.

b. For advanced players: players may not freely discard cards, but on

their turn, the player may push a card to the stack, meaning they

place one of the cards in their hand on the stack. The stack is

created next to the draw and discard piles. When a player draws to

conclude their turn, if they did not push to the stack, they can—for

each card they draw—choose to pop from the stack, meaning draw

the card from the top of the stack instead of the draw pile. This

mechanic allows players to exchange cards with each other with

some strategizing.

8. Players may talk freely and strategize together about their cards. They

can talk about their cards, but they may not show each other their hand.

9. Both players win when the central register matches the goal state. Both

players lose when all the cards have been drawn from the draw pile and

there is no way to win.

Player’s Turn:

1. You must do one or more of these actions in any order:

a. Play an operator on two registers or use an immediate and operator

on a register, or play a NOT on a register.

b. For beginner players: discard as many cards as you please.

c. For advanced players: push a card in your hand to the stack.

2. After all desired actions have been completed, draw from the draw pile

and/or the stack (if playing with it) until you have 6 cards in your hand.



Additional Reminders:

● This game is cooperative, and so players may talk about their cards and

their team strategy freely. They may not, however, show each other their

hands.

● Players can decide who goes first after looking at their cards and

discussing them.

● Players must take at least one action per turn.

● For the playing card version, note that bits are indexed from right to left.

● Players cannot push and pop from the stack in the same turn; in essence,

if they push to the stack in their turn, they can only draw from the draw

pile.

● Advanced players may wish to attempt multiple goal states in succession.



Operator table

9: AND

IN1 IN2 OUT

1 1 1

1 0 0

0 1 0

0 0 0

10: OR

IN1 IN2 OUT

1 1 1

1 0 1

0 1 1

0 0 0

J: XOR

IN1 IN2 OUT

1 1 0

1 0 1

0 1 1

0 0 0

Q: NOT
(use on one register, without an
immediate)

IN OUT

1 0

0 1

Immediates table

Black cards: (if n is the card number, then 2n−1 is 1, and the rest are 0)

● 1: 0000 0001

● 2: 0000 0010

● 3: 0000 0100

● 4: 0000 1000

● 5: 0001 0000

● 6: 0010 0000

● 7: 0100 0000



● 8: 1000 0000

Red cards: (if n is the card number, then 2n−1 is 0, and the rest are 1)

● 1: 1111 1110

● 2: 1111 1101

● 3: 1111 1011

● 4: 1111 0111

● 5: 1110 1111

● 6: 1101 1111

● 7: 1011 1111

● 8: 0111 1111


